New methodologies will be needed to ensure the airspace remains safe and efficient as traffic densities rise to accommodate new unmanned operations. This paper explores how unmanned free-flight traffic may operate in dense airspace. We develop and analyze autonomous collision avoidance systems for aircraft operating in dense airspace where traditional collision avoidance systems fail. We propose a metric for quantifying the decision burden on a collision avoidance system as well as a metric for measuring the impact of the collision avoidance system on airspace. We use deep reinforcement learning to compute corrections for an existing collision avoidance approach to account for dense airspace. The results show that a corrected collision avoidance system can operate more efficiently than traditional methods in dense airspace while maintaining high levels of safety.
One Comment
yewendeba